Power Electronics

MINISTART
Softstarter With Softstop
BA 9026

Applications
• Motor with gear, belt or chain drive
• Fans, pumps, conveyor systems, compressors
• Packaging machines, door-drives
• Start current limiting on 3-phase motors
• Reduces on off current on transformers and P.S.U's

Approvals and Markings

Applications
• According to IEC/EN 60947-4-2
• Softstart and softstop function
• 3-phase motor control
• For motors up to 5.5 kW
• Adjustable ramp time, starting torque and deceleration time
• Wide motor voltage range
• Galvanic separation of control input
• Galvanic separation of auxiliary power supply
• Integrated overtemperature monitoring
• 45 mm Baubreite

Function
Softstarts are electronic devices designed to enable 1-phase or 3-phase induction motors to start smoothly. The BA 9026 slowly ramps up the current on three phases, therefore allowing the motor torque to build up slowly. This reduces the mechanical stress or the machine and prevents damage to conveyed material.

When the motor is up to full speed the semiconductors in BA 9026 are bridged to prevent internal power losses and heat build up to addition BA 9026 allows a softstop function prolonging the stop time of the motor preventing high counter torques from abruptly stopping the motor.

Indication
LED green ON = Power connected
LED yellow ON = Power semiconductors bridged
LED red ON = Overtemperature

Block Diagram

Principle of Operation
For direct on line or star delta applications, terminals L1, L2, L3 are connected to the mains contactor, with the motor connected to terminals T1, T2, T3. A 24V DC auxiliary supply is connected to terminals A1, A2 and a 24V DC control signal connected to terminals X1-X2.

When power is connected to terminals L1, L2, L3 and 24V DC is presentat terminals X1-X2, the softstart will commence. Potentiometer \(t_{\text{on}} \) (0.5 - 5 s) adjusts the ramp time (time motor takes to get to full speed) and potentiometer \(M_{\text{ab}} \) adjusts the start voltage (50-80% nomV).

When the softstart is complete the internal semiconductors are auto-matically bridged. When 24 V DC is removed from terminals X1-X2, the softstop function will commence for the deceleration time period set on potentiometer \(t_{\text{off}} \) (0.5 - 5 s) and deceleration voltage level set on potentiometer \(M_{\text{ab}} \) (30-80% nomV).

Notes
Motor load must always be connected as continuous operation of the softstart with no load may cause overheating of the motor and softstart. It is recommended that the softstart is protected by superfast semiconductor fuses rated as per the current rating of the softstart of motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended.

All technical data in this list relate to the state at the moment of edition. We reserve the right for technical improvements and changes at any time.
Technical Data

Nominal voltage: AC 200 ... 460 V
Nominal frequency: 50 / 60Hz
Nominal motor power Pm at
400 V: 3 kW | 5.5 kW
200 V: 1.5 kW | 2.2 kW
Rated current: 8 A | 12 A
Switching frequency: 3 x I, \(t_{\text{sw}} = 5 \text{ s}, J_s = 20 \text{ °} \)
Min. motor power: Approx. 10 % of rated motor power

Set-up Procedure
Set potentiometer "Man" to minimum (fully anti-clockwise).
Set potentiometer "Mab" to maximum (fully clockwise).
Set potentiometer "tan" to maximum (fully clockwise).
Set potentiometer "tab" to maximum (fully clockwise).
Start the motor and turn potentiometer "Man" up until the motor starts to turn without excessive humming.
Stop the motor and restart.
Adjust potentiometer "tan" to give the desired ramp time.
Stop and restart the motor.
Adjust potentiometer "Mab" until the motor starts to visibly slow down at the initiation of the softstop cycle.
Stop and restart the motor.
Adjust potentiometer "tab" to give the desired deceleration time.
Stop and restart the motor, readjusting the potentiometers until the desired starting/stopping characteristics are achieved.

Attention: If the ramp-up time is adjusted to short, the internal bridging contact closes before the motor is on full speed. This may damage the bridging contactor or bridging relay.

Standard Type
BA 9026 3 AC 200 ... 460 V 50/60 Hz 3 kW
Article number: 0046450
• Nominal voltage: 3 AC 200 V
• Nominal motor power: 3 kW
• Width: 45 mm

Temperature Monitoring
BA 9026 features overtemperature monitoring of its internal power semiconductors. When the safe running temperature is exceeded the power semiconductors will turn off and a red LED on the front of the unit will illuminate. BA 9026 can be reset after the semiconductors have cooled down by momentarily removing the auxiliary supply voltage.

Ordering example for variant

Control Input
If a voltage of more than 13 V DC is connected to terminals X1/X2, the device begins with softstart. If the voltage falls lower than DC 5 V the device will softstop.

General Data
Operating mode: Continuous operation
Temperature range: Operation: 0 ... + 55 °C
Storage: - 25 ... + 75 °C
Relative air humidity: 93 % at 40 °C
Altitude: < 1000 m
Clearance and creepage distance Rated insulation voltage: AC 300 V
Overvoltage category: III
Rated impuls voltage / pollution degree between auxiliary voltage/control circuit nominal voltage: 4 kV / 2 IEC/EN 60664-1

Interference resistance Electrostatic discharge (ESD): 8 kV (air) IEC/EN 61000-4-2
HF-irradiation: 10 V / m IEC/EN 61000-4-3
1.0 GHz ... 2.5 GHz: 3 V / m IEC/EN 61000-4-3
2.5 GHz ... 2.7 GHz: 1 V / m IEC/EN 61000-4-3
Fast transients: 2 kV IEC/EN 61000-4-4
Surge voltage between wires for power supply: 1 kV IEC/EN 61000-4-5
between wire and ground: 2 kV IEC/EN 61000-4-5
HF-wire-guided: 10 V IEC/EN 61000-4-6
Voltage dips: IEC/EN 61000-4-11
Interference emission Wire guided: Limit value class B IEC/EN 60947-4-2
Radio irradiation: Limit value class B IEC/EN 60947-4-2

Degree of protection:
Housing: IP 40 IEC/EN 60529
Terminals: IP 20 IEC/EN 60529

Vibration resistance: Amplitude 0.35 mm frequency 10 ... 55 Hz, IEC/EN 60068-1
Climate resistance: 0 / 055 / 04 IEC/EN 60068-1
Wire connection: 2 x 2.5 mm² solid or 1 x 1.5 mm² stranded wire with sleeve DIN 46228-1/-2/-3/-4
Stripping length: 10 mm
Fixing torque: 0.8 Nm
Wire fixing: Flat terminals with self-lifting clamping piece IEC/EN 60999-1
Mounting: DIN rail
Weight: 300 g

Dimensions
Width x height x depth: 45 x 74 x 121 mm

Installation
This units must be mounted on a vertical mounting are a with the connections in a vertical plane, i.e. top to bottom.
Ensure that no external heat source is placed below the unit and a 40 mm air gap is maintained above and below. Other devices may be directly mounted either side of the unit.

Control Input
If a voltage of more than 13 V DC is connected to terminals X1/X2, the device begins with softstart. If the voltage falls lower than DC 5 V the device will softstop.

Set-up Procedure
Set potentiometer \(M_{ab} \) to minimum (fully anti-clockwise).
Set potentiometer \(M_{ab} \) to maximum (fully clockwise).
Set potentiometer \(t_{\text{sw}} \) to maximum (fully clockwise).
Start the motor and turn potentiometer \(M_{ab} \) up until the motor starts to turn without excessive humming.
Stop the motor and restart.
Adjust potentiometer \(t_{\text{sw}} \) to give the desired ramp time.
Stop and restart the motor.
Adjust potentiometer \(t_{\text{sw}} \) to give the desired deceleration time.
Stop and restart the motor. Adjust the potentiometers until the desired starting/stopping characteristics are achieved.

Attention: If the ramp-up time is adjusted to short, the internal bridging contact closes before the motor is on full speed. This may damage the bridging contactor or bridging relay.

Temperature Monitoring
BA 9026 features overtemperature monitoring of its internal power semiconductors. When the safe running temperature is exceeded the power semiconductors will turn off and a red LED on the front of the unit will illuminate. BA 9026 can be reset after the semiconductors have cooled down by momentarily removing the auxiliary supply voltage.
Safety Notes

- Never clear a fault when the device is switched on
- **Attention:** This device can be started by potential-free contact, while connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.
- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Connection Example

```
<table>
<thead>
<tr>
<th>BA9026</th>
<th>L1</th>
<th>A1</th>
<th>X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>L2</td>
<td>X2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC24V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Softstart and softstop